ÿØÿà JFIF    ÿÛ „  ( %"1!%)+...383,7(-.+  -+++--++++---+-+-----+---------------+---+-++7-----ÿÀ  ß â" ÿÄ     ÿÄ H    !1AQaq"‘¡2B±ÁÑð#R“Ò Tbr‚²á3csƒ’ÂñDS¢³$CÿÄ   ÿÄ %  !1AQa"23‘ÿÚ   ? ôÿ ¨pŸªáÿ —åYõõ\?àÒü©ŠÄï¨pŸªáÿ —åYõõ\?àÓü©ŠÄá 0Ÿªáÿ Ÿå[úƒ ú®ði~TÁbqÐ8OÕpÿ ƒOò¤Oè`–RÂáœá™êi€ßÉ< FtŸI“öÌ8úDf´°å}“¾œ6  öFá°y¥jñÇh†ˆ¢ã/ÃÐ:ªcÈ "Y¡ðÑl>ÿ ”ÏËte:qž\oäŠe÷󲍷˜HT4&ÿ ÓÐü6ö®¿øþßèô Ÿ•7Ñi’•j|“ñì>b…þS?*Óôÿ ÓÐü*h¥£ír¶ü UãS炟[AÐaè[ûª•õ&õj?†Éö+EzP—WeÒírJFt ‘BŒ†Ï‡%#tE Øz ¥OÛ«!1›üä±Í™%ºÍãö]°î(–:@<‹ŒÊö×òÆt¦ãº+‡¦%ÌÁ²h´OƒJŒtMÜ>ÀÜÊw3Y´•牋4ǍýʏTì>œú=Íwhyë,¾Ôò×õ¿ßÊa»«þˆѪQ|%6ž™A õ%:øj<>É—ÿ Å_ˆCbõ¥š±ý¯Ýƒï…¶|RëócÍf溪“t.СøTÿ *Ä¿-{†çàczůŽ_–^XþŒ±miB[X±d 1,é”zEù»& î9gœf™9Ð'.;—™i}!ôšåîqêÛ٤ёý£½ÆA–àôe"A$˝Úsäÿ ÷Û #°xŸëí(l »ý3—¥5m! rt`†0~'j2(]S¦¦kv,ÚÇ l¦øJA£Šƒ J3E8ÙiŽ:cÉžúeZ°€¯\®kÖ(79«Ž:¯X”¾³Š&¡* ….‰Ž(ÜíŸ2¥ª‡×Hi²TF¤ò[¨íÈRëÉ䢍mgÑ.Ÿ<öäS0í„ǹÁU´f#Vß;Õ–…P@3ío<ä-±»Ž.L|kªÀê›fÂ6@»eu‚|ÓaÞÆŸ…¨ááå>åŠ?cKü6ùTÍÆ”†sĤÚ;H2RÚ†õ\Ö·Ÿn'¾ ñ#ºI¤Å´%çÁ­‚â7›‹qT3Iï¨ÖÚ5I7Ë!ÅOóŸ¶øÝñØôת¦$Tcö‘[«Ö³šÒ';Aþ ¸èíg A2Z"i¸vdÄ÷.iõ®§)¿]¤À†–‡É&ä{V¶iŽ”.Ó×Õÿ û?h¬Mt–íª[ÿ Ñÿ ÌV(í}=ibÔ¡›¥¢±b Lô¥‡piη_Z<‡z§èŒ)iÖwiÇ 2hÙ3·=’d÷8éŽ1¦¸c¤µ€7›7Ø ð\á)} ¹fËí›pAÃL%âc2 í§æQz¿;T8sæ°qø)QFMð‰XŒÂ±N¢aF¨…8¯!U  Z©RÊ ÖPVÄÀÍin™Ì-GˆªÅËŠ›•zË}º±ŽÍFò¹}Uw×#ä5B¤{î}Ð<ÙD é©¤&‡ïDbàÁôMÁ." ¤‡ú*õ'VŽ|¼´Úgllº¼klz[Æüï÷Aób‡Eÿ dÑ»Xx9ÃÜ£ÁT/`¼¸vI±Ýµ·Ë‚“G³þ*Ÿû´r|*}<¨îºœ @¦mÄ’M¹”.œ«Y–|6ÏU¤jç¥ÕÞqO ˜kDÆÁ¨5ÿ š;ÐЦ¦€GÙk \ –Þ=â¼=SͧµªS°ÚÍpÜãQűÀõ¬?ÃÁ1Ñ•õZà?hóœ€ L¦l{Y*K˜Ù›zc˜–ˆâ ø+¾ ­-Ök¥%ùEÜA'}ˆ><ÊIè“bpÍ/qÞâvoX€w,\úªò6Z[XdÒæ­@Ö—€$òJí#é>'°Ú ôª˜<)4ryÙ£|óAÅn5žêŸyÒäMÝ2{"}‰–¤l÷ûWX\l¾Á¸góÉOÔ /óñB¤f¸çñ[.P˜ZsÊË*ßT܈§QN¢’¡¨§V¼(Üù*eÕ“”5T¨‹Âê¥FŒã½Dü[8'Ò¥a…Ú¶k7a *•›¼'Ò·\8¨ª\@\õ¢¦íq+DÙrmÎ…_ªæ»ŠÓœ¡¯’Ré9MÅ×D™lælffc+ŒÑ,ý™ÿ ¯þǤ=Å’Á7µ÷ÚÛ/“Ü€ñýã¼àí¾ÕÑ+ƒ,uµMâÀÄbm:ÒÎPæ{˜Gz[ƒ¯«® KHà`ߨŠéí¯P8Aq.C‰ à€kòpj´kN¶qô€…Õ,ÜNŠª-­{Zö’æû44‰sŽè‰îVíRœÕm" 6?³D9¡ÇTíÅꋇ`4«¸ÝÁô ï’ýorqКÇZ«x4Žâéþuïf¹µö[P ,Q£éaX±`PÉÍZ ¸äYúg üAx ’6Lê‚xÝÓ*äQ  Ï’¨hÍ =²,6ï#rÃ<¯–£»ƒ‹,–ê•€ aÛsñ'%Æ"®ÛüìBᝠHÚ3ß°©$“XnœÖ’î2ËTeûìxîß ¦å¿çÉ ðK§þ{‘t‚Ϋ¬jéîZ[ ”š7L¥4VÚCE×]m¤Øy”ä4-dz£œ§¸x.*ãÊÊ b÷•h:©‡¦s`BTÁRû¾g⻩‹jø sF¢àJøFl‘È•Xᓁà~*j¯ +(ÚÕ6-£¯÷GŠØy‚<Ç’.F‹Hœw(+)ÜÜâÈzÄäT§FߘãÏ;DmVœ3Àu@mÚüXÝü•3B¨òÌÁÛ<·ÃÜ z,Ì@õÅ·d2]ü8s÷IôÞ¯^Ç9¢u„~ëAŸï4«M? K]­ÅàPl@s_ p:°¬ZR”´›JC[CS.h‹ƒïËœ«Æ]–÷ó‚wR×k7X‰k›‘´ù¦=¡«‰¨¨Â')—71ó’c‡Ðúµ `é.{§p¹ój\Ž{1h{o±Ý=áUÊïGÖŒõ–-BÄm+AZX¶¡ ïHðæ¥JmÙ;…䡟ˆ¦ ° äšiÉg«$üMk5¤L“’çÊvïâï ,=f“"íἊ5ô¬x6{ɏžID0e¸vçmi'︧ºð9$ò¹÷*£’9ÿ ²TÔ…×>JV¥}Œ}$p[bÔ®*[jzS*8 ”·T›Í–ñUîƒwo$áè=LT™ç—~ô·¤ÈÚ$榍q‰„+´kFm)ž‹©i–ËqÞŠ‰à¶ü( ‚•§ •°ò·‡#5ª•µÊ﯅¡X¨šÁ*F#TXJÊ ušJVÍ&=iÄs1‚3•'fý§5Ñ<=[íÞ­ PÚ;ѱÌ_~Ä££8rÞ ²w;’hDT°>ÈG¬8Á²ÚzŽ®ò®qZcqJêäÞ-ö[ܘbň±çb“ж31²n×iƒðÕ;1¶þÉ ªX‰,ßqÏ$>•î íZ¥Z 1{ç൵+ƒÕµ¥°T$§K]á»Ûï*·¤tMI’ÂZbŽÕiÒ˜}bÓ0£ª5›¨ [5Ž^ÝœWøÂÝh° ¢OWun£¤5 a2Z.G2³YL]jåtì”ä ÁÓ‘%"©<Ôúʰsº UZvä‡ÄiÆÒM .÷V·™ø#kèýiíÌ–ª)µT[)BˆõÑ xB¾B€ÖT¨.¥~ð@VĶr#¸ü*åZNDŽH;âi ],©£öØpù(šºãö¼T.uCê•4@ÿ GÕÛ)Cx›®0ø#:ÏðFÒbR\(€€Ä®fã4Þ‰Fä¯HXƒÅ,†öEÑÔÜ]Öv²?tLÃvBY£ú6Êu5ÅAQ³1‘’¬x–HŒÐ‡ ^ ¸KwJôÖŽ5×CÚ¨vÜ«/B0$×k°=ðbÇ(Ï)w±A†Á† 11Í=èQšµ626ŒÜ/`G«µ<}—-Ö7KEHÈÉðóȤmݱû±·ø«Snmá=“䫚mݱŸ¡¶~ó·“äUóJæúòB|E LêŽy´jDÔ$G¢þÐñ7óR8ýÒ…Ç› WVe#·Ÿ p·Fx~•ݤF÷0Èÿ K¯æS<6’¡WШ; ´ÿ ¥Êø\Òuî†åÝ–VNœkÒ7oòX¨Á­Ø÷FÎÑä±g÷ÿ M~Çî=p,X´ ÝÌÚÅ‹’ÃjÖ.ØöÏñ qïQ¤ÓZE†° =6·]܈ s¸>v•Ž^Ý\wq9r‰Î\¸¡kURÒ$­*‹Nq?Þª*!sŠÆ:TU_u±T+øX¡ ®¹¡,ÄâÃBTsÜ$Ø›4m椴zÜK]’’›Pƒ @€#â˜`é¹=I‡fiV•Ôî“nRm+µFPOhÍ0B£ €+¬5c v•:P'ÒyÎ ‰V~‚Ó†ÖuókDoh$å\*ö%Ю=£«…aȼ½÷Û.-½VŒŠ¼'lyî±1¬3ó#ÞE¿ÔS¤gV£m›=§\û"—WU¤ÚǼÿ ÂnÁGŒÃ ‚õN D³õNÚíŒÕ;HôyÄÈ©P¹Ä{:?R‘Ô¨âF÷ø£bÅó® JS|‚R÷ivýáâ€Æé¡è³´IئÑT!§˜•ت‚¬â@q€wnïCWÄ@JU€ê¯m6]Ï:£âx'+ÒðXvÓ¦Úm=–´7œ $ì“B£~p%ÕŸUþ« N@¼üï~w˜ñø5®—'Ôe»¤5ã//€ž~‰Tþ›Å7•#¤× Íö pÄ$ùeåì*«ÓŠEØWEÈsßg ¦ûvžSsLpºÊW–âµEWöˬH; ™!CYõZ ÃÄf æ#1W. \uWâ\,\Çf j’<qTbên›Î[vxx£ë 'ö¨1›˜ÀM¼Pÿ H)ƒêêŒA7s,|F“ 꺸k³9Ìö*ç®;Ö!Ö$Eiž•¹ÒÚ†ýóéÝû¾ÕS®ó$’NÝäŸz¤5r¦ãÄÃD÷Üø!°ø‡Ô&@m™Ì^Ãä­d q5Lnÿ N;.6½·N|#ä"1Nƒx“ã<3('&ñßt  ~ªu”1Tb㫨9ê–›–bìd$ߣ=#ÕãÒmU¯eí$EFù5ýYô櫨æì™Ç—±ssM]·á¿0ÕåJRÓªîiƒ+O58ÖñªŠÒx" \µâá¨i’¤i —Ö ” M+M¤ë9‚‰A¦°Qõ¾ßøK~¼Ã‘g…Ö´~÷Ï[3GUœÒ½#…kàÔ®Ò”‰³·dWV‰IP‰Ú8u¹”E ÖqLj¾êÕCBš{A^Âß;–¨`¯¬ìö ˼ ×tìø.tƐm*n¨y4o&Àx¥n¦×î‡aupáÛj8¿m›è¶ã!o½;ß0y^ý×^EÑ¿ÒjzŒ­)vÚÑnÄL …^ªô× ‡—‚3k Îý­hï]içå–îÏ*÷ñþ»Ô CÒjøjÍznˆ´ ¹#b'Fô‹ ‰v¥'’à'T´ƒHýÍ%M‰ ƒ&ÆÇŒï1 ‘ –Þ ‰i¬s žR-Ÿ kЬá¬7:þ 0ŒÅÒÕ/aÙ¬ÃÝ#Úøœ ©aiVc‰. ¹¦ãµ” ›Yg¦›ÆÎýº°f³7ƒhá·¸­}&D9¡ÂsÉÙÞèŠõØàC™¨ñbFC|´Ü(ŸƒÚÒ-%»'a Ì¿)ËÇn¿úÿ ÞŽX…4ÊÅH^ôΑí@ù¹Eh¶“L8Çjù ¼ÎåVªóR©Ï5uà V4lZß®=€xÖŸ–ÑÈ ÷”¨°¾__yM1tÉ?uÆþIkÄgæ@þ[¢†°XÃJ£j·:nkÅ¢u ‘}âGzö­/IµèЬ¼48q¦F°ŽR¼=ûì{´¯RýicS ÕÛ íNtÍÙï£,w4rêì®»~x(©Uñ§#Ñ&œÕ¤>ÎåÍÓ9’Ö{9eV­[Öjâ²ãu]˜å2›qÑšÕJç0€sÄ|Êëè0튔bÁ>“{×_F`Ø©ºê:µä,v¤ðfc1±"«ÔÍän1#=· Âøv~H½ÐßA¾¿Ü€Óš]Õ; I¾÷ç‚Qi†î¹9ywÔKG˜áñ zQY—§ÃÕZ07§X‚ Áh;ÁM)iÌCH-¯T‘ë|A0{Ò½LÚ–TâÖkÜ’dÀ“rmm»”جPF³ÖcbE§T€ÒxKºû’Ó®7±²(\4ŽÃ¸Uu@j™yĵ;³µ!Á¢b.W¤=mõ´êµK k ¸K^ÜÛ#p*Ü14qkZç5ïë †°5Ï%ÍÛ<Õ¤×Ô¥ê†C Õ´¼ú$ƒÖ“”]Ù¬qÞÚ[4©ý!ûÏ—Áb쳐XµA¬â~`›Çr¸8ìùÝ䫦<>ä÷«?xs´ÇÑ /á;¹øüÊÈÙà{"@Žïzâ¬[âß‚ U_<ÇŸ½4èN˜ú61®qŠu ¦þF£»äJ_ˆÙÎ~ ÞAã–݄ϗrŠD;xTž‘ô`É«…suãO`?³à™ô Lý#Íc5öoæØ‚y´´÷«ZR§<&JÇ+éâô´€i!Àˆ0æAoàðLèÖ-2ŸõW.’t^–(KÁmHµV@xÜÇy®Ñø­â^:Ú3w· 7½¹°ñ¸â¹®:',«Mœ—n­Á+Ãbš LÈ‘ÄnRÓÅœ%¦²‰¨ùQ:¤f‚ "PÕtô¸…cæl…&˜Ú˜Ôkv‹ž+vŠ,=¢v­6—Xy*¥t£«<™:“aîϲ=¦6rO]XI¿Œ÷¤zÚ­›¶ 6÷”w\d ü~v®ˆÌk«^m<ÿ ¢‰Õ\)ùºŽ;… lîÙÅEŠ®cѾ@vnMÏ,¼“ñ•ŽBxðÃzãÇç%3ˆ"}Ù•Åî> BÉú;Ò]V+P˜F_´ßé> Øše|ï‡ÄOmFæÇ ãqÞ$/xÐx­z`ï9"œÜij‚!7.\Td…9M‡•iŽ‹¾‘50ÞŽn¥ß4ÉôO ¹*í^QêËÜÇÌ8=ާs‰'ÂëÙ«á%Pú[O †ÅP¯Vsް.‰,kc¶ ¬A9n˜XÎ-ÞšN["¹QÕ‰ƒMýÁߺXJæÍaLj¾×Ãmã¾ãÚ uñÒþåQô¦¥ /ÄUx:‚ÍÜ’ Đ©ØÝ3V¨‰ÕnÐ6ó*óúK­«…c ¯U òhsý­jóÔj#,ímŒRµ«lbïUTŒÑ8†Ä0œÏr`ð¡¬É Ї ë"À² ™ 6¥ f¶ ¢ÚoܱԷ-<Àî)†a¶ž'Ú»¨TXqØæ¶÷YÄHy˜9ÈIW­YÀuMFë ºÏ’AqÌ4·/Ú †ô'i$øä­=Ä Ý|öK×40è|È6p‘0§)o¥ctî§H+CA-“ xØ|ÐXАç l8íºð3Ø:³¤¬KX¯UÿÙ /* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef HEADER_BN_H # define HEADER_BN_H # include # ifndef OPENSSL_NO_STDIO # include # endif # include # include # include # include #ifdef __cplusplus extern "C" { #endif /* * 64-bit processor with LP64 ABI */ # ifdef SIXTY_FOUR_BIT_LONG # define BN_ULONG unsigned long # define BN_BYTES 8 # endif /* * 64-bit processor other than LP64 ABI */ # ifdef SIXTY_FOUR_BIT # define BN_ULONG unsigned long long # define BN_BYTES 8 # endif # ifdef THIRTY_TWO_BIT # define BN_ULONG unsigned int # define BN_BYTES 4 # endif # define BN_BITS2 (BN_BYTES * 8) # define BN_BITS (BN_BITS2 * 2) # define BN_TBIT ((BN_ULONG)1 << (BN_BITS2 - 1)) # define BN_FLG_MALLOCED 0x01 # define BN_FLG_STATIC_DATA 0x02 /* * avoid leaking exponent information through timing, * BN_mod_exp_mont() will call BN_mod_exp_mont_consttime, * BN_div() will call BN_div_no_branch, * BN_mod_inverse() will call BN_mod_inverse_no_branch. */ # define BN_FLG_CONSTTIME 0x04 # define BN_FLG_SECURE 0x08 # if OPENSSL_API_COMPAT < 0x00908000L /* deprecated name for the flag */ # define BN_FLG_EXP_CONSTTIME BN_FLG_CONSTTIME # define BN_FLG_FREE 0x8000 /* used for debugging */ # endif void BN_set_flags(BIGNUM *b, int n); int BN_get_flags(const BIGNUM *b, int n); /* Values for |top| in BN_rand() */ #define BN_RAND_TOP_ANY -1 #define BN_RAND_TOP_ONE 0 #define BN_RAND_TOP_TWO 1 /* Values for |bottom| in BN_rand() */ #define BN_RAND_BOTTOM_ANY 0 #define BN_RAND_BOTTOM_ODD 1 /* * get a clone of a BIGNUM with changed flags, for *temporary* use only (the * two BIGNUMs cannot be used in parallel!). Also only for *read only* use. The * value |dest| should be a newly allocated BIGNUM obtained via BN_new() that * has not been otherwise initialised or used. */ void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags); /* Wrapper function to make using BN_GENCB easier */ int BN_GENCB_call(BN_GENCB *cb, int a, int b); BN_GENCB *BN_GENCB_new(void); void BN_GENCB_free(BN_GENCB *cb); /* Populate a BN_GENCB structure with an "old"-style callback */ void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *), void *cb_arg); /* Populate a BN_GENCB structure with a "new"-style callback */ void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *), void *cb_arg); void *BN_GENCB_get_arg(BN_GENCB *cb); # define BN_prime_checks 0 /* default: select number of iterations based * on the size of the number */ /* * BN_prime_checks_for_size() returns the number of Miller-Rabin iterations * that will be done for checking that a random number is probably prime. The * error rate for accepting a composite number as prime depends on the size of * the prime |b|. The error rates used are for calculating an RSA key with 2 primes, * and so the level is what you would expect for a key of double the size of the * prime. * * This table is generated using the algorithm of FIPS PUB 186-4 * Digital Signature Standard (DSS), section F.1, page 117. * (https://dx.doi.org/10.6028/NIST.FIPS.186-4) * * The following magma script was used to generate the output: * securitybits:=125; * k:=1024; * for t:=1 to 65 do * for M:=3 to Floor(2*Sqrt(k-1)-1) do * S:=0; * // Sum over m * for m:=3 to M do * s:=0; * // Sum over j * for j:=2 to m do * s+:=(RealField(32)!2)^-(j+(k-1)/j); * end for; * S+:=2^(m-(m-1)*t)*s; * end for; * A:=2^(k-2-M*t); * B:=8*(Pi(RealField(32))^2-6)/3*2^(k-2)*S; * pkt:=2.00743*Log(2)*k*2^-k*(A+B); * seclevel:=Floor(-Log(2,pkt)); * if seclevel ge securitybits then * printf "k: %5o, security: %o bits (t: %o, M: %o)\n",k,seclevel,t,M; * break; * end if; * end for; * if seclevel ge securitybits then break; end if; * end for; * * It can be run online at: * http://magma.maths.usyd.edu.au/calc * * And will output: * k: 1024, security: 129 bits (t: 6, M: 23) * * k is the number of bits of the prime, securitybits is the level we want to * reach. * * prime length | RSA key size | # MR tests | security level * -------------+--------------|------------+--------------- * (b) >= 6394 | >= 12788 | 3 | 256 bit * (b) >= 3747 | >= 7494 | 3 | 192 bit * (b) >= 1345 | >= 2690 | 4 | 128 bit * (b) >= 1080 | >= 2160 | 5 | 128 bit * (b) >= 852 | >= 1704 | 5 | 112 bit * (b) >= 476 | >= 952 | 5 | 80 bit * (b) >= 400 | >= 800 | 6 | 80 bit * (b) >= 347 | >= 694 | 7 | 80 bit * (b) >= 308 | >= 616 | 8 | 80 bit * (b) >= 55 | >= 110 | 27 | 64 bit * (b) >= 6 | >= 12 | 34 | 64 bit */ # define BN_prime_checks_for_size(b) ((b) >= 3747 ? 3 : \ (b) >= 1345 ? 4 : \ (b) >= 476 ? 5 : \ (b) >= 400 ? 6 : \ (b) >= 347 ? 7 : \ (b) >= 308 ? 8 : \ (b) >= 55 ? 27 : \ /* b >= 6 */ 34) # define BN_num_bytes(a) ((BN_num_bits(a)+7)/8) int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w); int BN_is_zero(const BIGNUM *a); int BN_is_one(const BIGNUM *a); int BN_is_word(const BIGNUM *a, const BN_ULONG w); int BN_is_odd(const BIGNUM *a); # define BN_one(a) (BN_set_word((a),1)) void BN_zero_ex(BIGNUM *a); # if OPENSSL_API_COMPAT >= 0x00908000L # define BN_zero(a) BN_zero_ex(a) # else # define BN_zero(a) (BN_set_word((a),0)) # endif const BIGNUM *BN_value_one(void); char *BN_options(void); BN_CTX *BN_CTX_new(void); BN_CTX *BN_CTX_secure_new(void); void BN_CTX_free(BN_CTX *c); void BN_CTX_start(BN_CTX *ctx); BIGNUM *BN_CTX_get(BN_CTX *ctx); void BN_CTX_end(BN_CTX *ctx); int BN_rand(BIGNUM *rnd, int bits, int top, int bottom); int BN_priv_rand(BIGNUM *rnd, int bits, int top, int bottom); int BN_rand_range(BIGNUM *rnd, const BIGNUM *range); int BN_priv_rand_range(BIGNUM *rnd, const BIGNUM *range); int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom); int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range); int BN_num_bits(const BIGNUM *a); int BN_num_bits_word(BN_ULONG l); int BN_security_bits(int L, int N); BIGNUM *BN_new(void); BIGNUM *BN_secure_new(void); void BN_clear_free(BIGNUM *a); BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b); void BN_swap(BIGNUM *a, BIGNUM *b); BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret); int BN_bn2bin(const BIGNUM *a, unsigned char *to); int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen); BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret); int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen); BIGNUM *BN_mpi2bn(const unsigned char *s, int len, BIGNUM *ret); int BN_bn2mpi(const BIGNUM *a, unsigned char *to); int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx); /** BN_set_negative sets sign of a BIGNUM * \param b pointer to the BIGNUM object * \param n 0 if the BIGNUM b should be positive and a value != 0 otherwise */ void BN_set_negative(BIGNUM *b, int n); /** BN_is_negative returns 1 if the BIGNUM is negative * \param b pointer to the BIGNUM object * \return 1 if a < 0 and 0 otherwise */ int BN_is_negative(const BIGNUM *b); int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx); # define BN_mod(rem,m,d,ctx) BN_div(NULL,(rem),(m),(d),(ctx)) int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx); int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m); int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m); int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m); int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, BN_CTX *ctx); int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m); BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w); BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w); int BN_mul_word(BIGNUM *a, BN_ULONG w); int BN_add_word(BIGNUM *a, BN_ULONG w); int BN_sub_word(BIGNUM *a, BN_ULONG w); int BN_set_word(BIGNUM *a, BN_ULONG w); BN_ULONG BN_get_word(const BIGNUM *a); int BN_cmp(const BIGNUM *a, const BIGNUM *b); void BN_free(BIGNUM *a); int BN_is_bit_set(const BIGNUM *a, int n); int BN_lshift(BIGNUM *r, const BIGNUM *a, int n); int BN_lshift1(BIGNUM *r, const BIGNUM *a); int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx); int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont); int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1, const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx); int BN_mask_bits(BIGNUM *a, int n); # ifndef OPENSSL_NO_STDIO int BN_print_fp(FILE *fp, const BIGNUM *a); # endif int BN_print(BIO *bio, const BIGNUM *a); int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx); int BN_rshift(BIGNUM *r, const BIGNUM *a, int n); int BN_rshift1(BIGNUM *r, const BIGNUM *a); void BN_clear(BIGNUM *a); BIGNUM *BN_dup(const BIGNUM *a); int BN_ucmp(const BIGNUM *a, const BIGNUM *b); int BN_set_bit(BIGNUM *a, int n); int BN_clear_bit(BIGNUM *a, int n); char *BN_bn2hex(const BIGNUM *a); char *BN_bn2dec(const BIGNUM *a); int BN_hex2bn(BIGNUM **a, const char *str); int BN_dec2bn(BIGNUM **a, const char *str); int BN_asc2bn(BIGNUM **a, const char *str); int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); /* returns * -2 for * error */ BIGNUM *BN_mod_inverse(BIGNUM *ret, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); BIGNUM *BN_mod_sqrt(BIGNUM *ret, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); void BN_consttime_swap(BN_ULONG swap, BIGNUM *a, BIGNUM *b, int nwords); /* Deprecated versions */ DEPRECATEDIN_0_9_8(BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe, const BIGNUM *add, const BIGNUM *rem, void (*callback) (int, int, void *), void *cb_arg)) DEPRECATEDIN_0_9_8(int BN_is_prime(const BIGNUM *p, int nchecks, void (*callback) (int, int, void *), BN_CTX *ctx, void *cb_arg)) DEPRECATEDIN_0_9_8(int BN_is_prime_fasttest(const BIGNUM *p, int nchecks, void (*callback) (int, int, void *), BN_CTX *ctx, void *cb_arg, int do_trial_division)) /* Newer versions */ int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb); int BN_is_prime_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, BN_GENCB *cb); int BN_is_prime_fasttest_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, int do_trial_division, BN_GENCB *cb); int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx); int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, const BIGNUM *Xp, const BIGNUM *Xp1, const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb); int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, BIGNUM *Xp1, BIGNUM *Xp2, const BIGNUM *Xp, const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb); BN_MONT_CTX *BN_MONT_CTX_new(void); int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_MONT_CTX *mont, BN_CTX *ctx); int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont, BN_CTX *ctx); int BN_from_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont, BN_CTX *ctx); void BN_MONT_CTX_free(BN_MONT_CTX *mont); int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx); BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from); BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_RWLOCK *lock, const BIGNUM *mod, BN_CTX *ctx); /* BN_BLINDING flags */ # define BN_BLINDING_NO_UPDATE 0x00000001 # define BN_BLINDING_NO_RECREATE 0x00000002 BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod); void BN_BLINDING_free(BN_BLINDING *b); int BN_BLINDING_update(BN_BLINDING *b, BN_CTX *ctx); int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx); int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx); int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b, BN_CTX *); int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b, BN_CTX *); int BN_BLINDING_is_current_thread(BN_BLINDING *b); void BN_BLINDING_set_current_thread(BN_BLINDING *b); int BN_BLINDING_lock(BN_BLINDING *b); int BN_BLINDING_unlock(BN_BLINDING *b); unsigned long BN_BLINDING_get_flags(const BN_BLINDING *); void BN_BLINDING_set_flags(BN_BLINDING *, unsigned long); BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b, const BIGNUM *e, BIGNUM *m, BN_CTX *ctx, int (*bn_mod_exp) (BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx), BN_MONT_CTX *m_ctx); DEPRECATEDIN_0_9_8(void BN_set_params(int mul, int high, int low, int mont)) DEPRECATEDIN_0_9_8(int BN_get_params(int which)) /* 0, mul, 1 high, 2 low, 3 * mont */ BN_RECP_CTX *BN_RECP_CTX_new(void); void BN_RECP_CTX_free(BN_RECP_CTX *recp); int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *rdiv, BN_CTX *ctx); int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, BN_RECP_CTX *recp, BN_CTX *ctx); int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx); int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, BN_RECP_CTX *recp, BN_CTX *ctx); # ifndef OPENSSL_NO_EC2M /* * Functions for arithmetic over binary polynomials represented by BIGNUMs. * The BIGNUM::neg property of BIGNUMs representing binary polynomials is * ignored. Note that input arguments are not const so that their bit arrays * can be expanded to the appropriate size if needed. */ /* * r = a + b */ int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); # define BN_GF2m_sub(r, a, b) BN_GF2m_add(r, a, b) /* * r=a mod p */ int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p); /* r = (a * b) mod p */ int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx); /* r = (a * a) mod p */ int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); /* r = (1 / b) mod p */ int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx); /* r = (a / b) mod p */ int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx); /* r = (a ^ b) mod p */ int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx); /* r = sqrt(a) mod p */ int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); /* r^2 + r = a mod p */ int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); # define BN_GF2m_cmp(a, b) BN_ucmp((a), (b)) /*- * Some functions allow for representation of the irreducible polynomials * as an unsigned int[], say p. The irreducible f(t) is then of the form: * t^p[0] + t^p[1] + ... + t^p[k] * where m = p[0] > p[1] > ... > p[k] = 0. */ /* r = a mod p */ int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]); /* r = (a * b) mod p */ int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx); /* r = (a * a) mod p */ int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx); /* r = (1 / b) mod p */ int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *b, const int p[], BN_CTX *ctx); /* r = (a / b) mod p */ int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx); /* r = (a ^ b) mod p */ int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx); /* r = sqrt(a) mod p */ int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx); /* r^2 + r = a mod p */ int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx); int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max); int BN_GF2m_arr2poly(const int p[], BIGNUM *a); # endif /* * faster mod functions for the 'NIST primes' 0 <= a < p^2 */ int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); const BIGNUM *BN_get0_nist_prime_192(void); const BIGNUM *BN_get0_nist_prime_224(void); const BIGNUM *BN_get0_nist_prime_256(void); const BIGNUM *BN_get0_nist_prime_384(void); const BIGNUM *BN_get0_nist_prime_521(void); int (*BN_nist_mod_func(const BIGNUM *p)) (BIGNUM *r, const BIGNUM *a, const BIGNUM *field, BN_CTX *ctx); int BN_generate_dsa_nonce(BIGNUM *out, const BIGNUM *range, const BIGNUM *priv, const unsigned char *message, size_t message_len, BN_CTX *ctx); /* Primes from RFC 2409 */ BIGNUM *BN_get_rfc2409_prime_768(BIGNUM *bn); BIGNUM *BN_get_rfc2409_prime_1024(BIGNUM *bn); /* Primes from RFC 3526 */ BIGNUM *BN_get_rfc3526_prime_1536(BIGNUM *bn); BIGNUM *BN_get_rfc3526_prime_2048(BIGNUM *bn); BIGNUM *BN_get_rfc3526_prime_3072(BIGNUM *bn); BIGNUM *BN_get_rfc3526_prime_4096(BIGNUM *bn); BIGNUM *BN_get_rfc3526_prime_6144(BIGNUM *bn); BIGNUM *BN_get_rfc3526_prime_8192(BIGNUM *bn); # if OPENSSL_API_COMPAT < 0x10100000L # define get_rfc2409_prime_768 BN_get_rfc2409_prime_768 # define get_rfc2409_prime_1024 BN_get_rfc2409_prime_1024 # define get_rfc3526_prime_1536 BN_get_rfc3526_prime_1536 # define get_rfc3526_prime_2048 BN_get_rfc3526_prime_2048 # define get_rfc3526_prime_3072 BN_get_rfc3526_prime_3072 # define get_rfc3526_prime_4096 BN_get_rfc3526_prime_4096 # define get_rfc3526_prime_6144 BN_get_rfc3526_prime_6144 # define get_rfc3526_prime_8192 BN_get_rfc3526_prime_8192 # endif int BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom); # ifdef __cplusplus } # endif #endif